
Trust and attestation in 5G/6G networks

Antonio Lioy
< antonio.lioy @ polito.it >

Politecnico di Torino
Dip. Automatica e Informatica

Torino – Italy

First Summer School on Security and Privacy in 6G networks
Madrid (Spain) – June 24-28, 2024

Typical distributed infrastructure
(e.g. 5G/6G networks)

© A.Lioy (Politecnico di Torino, 2024) 2

cloud (storage, computation)

IoT & personal
devices

edge devices

Trend towards softwarization

 SDN (software-defined networking)
 … but also
 SDR, NFV, …
 AI (!)

 as a consequence, more flexible but more vulnerable
 software more prone to bugs than hardware
 software updates

© A.Lioy (Politecnico di Torino, 2024) 3

- EASY (FAST, FLEXIBLE, …)
- CHEAP
- SECURE
… PICK TWO!

Can I trust this infrastructure?

 trustworthy = will behave in the expected way
 problems:
 trust in the cloud provider(s)
 trust in the network/edge provider(s)
 low or no access control to edge- and end-devices
 low cost IoT devices (typically it implies low security too)
 personal devices (typically managed by “ignorant” users)

 if possible, protect (i.e. avoid/block attacks)
 otherwise, at least monitor the “state” for early detection

(and possibly reaction)

© A.Lioy (Politecnico di Torino, 2024) 4

INTEGRITY VERIFICATION

Integrity

 hardware
 am I talking to the right (intended) node?
 does it host the expected (physical) components?

 software
 am I talking to the right (intended) software component?
 is it correctly configured?
 is the baseline software the expected one?

 from trust in a server …
 the one controlling the key used for TLS (or IPsec) authN

 … to trust in the service
 the one receiving/providing the data exchanged

© A.Lioy (Politecnico di Torino, 2024) 5

Digest 101

 digest is a fixed-length summary of data
 typically computed via a cryptographic hash function

(e.g. SHA-256 creates a 256-bit digest)
 dgst = h (data)

 digest permits to verify if data have been altered
 if we store/transmit data+dgst and data is changed to data'
 … then dgst' = h(data') ≠ dgst = h(data)

 … but digest must be protected otherwise an attacker can
change the data and change the digest too (!)
 simple (but weak) – compute a MAC with a shared key K
 mac = h(data + K)

 complex (but strong) – compute a digital signature

© A.Lioy (Politecnico di Torino, 2024) 6

Digital signature 101

 digital signature is normally
 associated to a key-pair of the signer:
 private key (SK) to create the signature
 public key (PK) to verify the signature

 includes computation of digest of the data
 dsig = sign(SK, h, data)
 verify(PK, h, data, dsig) => OK / FAIL

 so a digital signature is associated with two properties:
 authentication (only the owner of SK can create signature, but

everybody can verify it)
 integrity (if the signed data are changed after the signature,

then that action will be detected because signature verification
will fail)

© A.Lioy (Politecnico di Torino, 2024) 7

Baseline computer system protection

 attackers try to inject malware at the lowest possible level to
remain undetected and control the largest part of the system
 modify the OS
 try to boot an alternative OS
 modify the boot sequence or the boot loader

 we need to protect the boot system and the OS
 once we had the BIOS … very difficult to protect
 now we have UEFI … with native support for firmware

signature and verification
 then the boot loader can verify the OS before activating it

© A.Lioy (Politecnico di Torino, 2024) 8

Rootkits

 Firmware rootkits
 overwrite the BIOS/UEFI (or the firmware of other hardware!)

so the rootkit can start before the OS
 Bootkits
 replace the OS's bootloader so that the node loads the bootkit

before the OS
 Kernel rootkits
 replace a portion of the OS kernel so the rootkit can start

automatically when the OS loads
 Driver rootkits
 pretend to be one of the trusted drivers that the OS (e.g.

Windows) uses to communicate with the hardware

© A.Lioy (Politecnico di Torino, 2024) 9

Software to protect software?

 not a good idea (as software may fail …)
 need hardware support to protect software
 RoT (Root-of-Trust)
 should be part of the TCB (Trusted Computing Base)
 … because hardware is anyway operated by software or

firmware
 TCB should be minimal

© A.Lioy (Politecnico di Torino, 2024) 10

Self-verification of firmware (example by HPE)

 HPE has a “signature” region at a fixed location in the final
BIOS image (16MB)

 after the BIOS build (i.e. at manufacturing time), the SHA256
of specific BIOS regions is calculated; these regions include
static code, the BIOS version information, and microcode

 the hash is sent to the HPE signing server which returns a
signed hash image (32 bytes + signature and certificate size),
which is copied into the “signature” region

 after power on, the early BIOS code calculates the combined
hash of each of the specific valid regions in the BIOS image

 after verifying that the “signature” region contents are valid,
the BIOS compares the stored hash and the calculated hash

 if both are same, boot continues, otherwise halt the system

© A.Lioy (Politecnico di Torino, 2024) 11

HW root of trust for firmware protection (I)

 self-verification is based on the firmware itself (static portion
verifies the part that can be updated)

 but verification of the firmware can be implemented by an
external chip as well (picture below and text in next slide)

© A.Lioy (Politecnico di Torino, 2024) 12

HW root of trust for firmware protection (II)

 the external crypto chip validates the BIOS in SPI flash post
power ON

 once validation is successful, only then the x86 CPU will be
out of reset, else remains in reset state

 this chip has a fusing option so that we can fuse one public
key hash which will be used to verify the signature of hash
file stored in the signature region

 validation flow is similar to BIOS integrity check by BIOS,
except that that the external chip is doing the validation
which makes it the real HW root of trust

© A.Lioy (Politecnico di Torino, 2024) 13

Root of Trust (RoT)

 a component that must always behave in the expected
manner because its misbehaviour cannot be detected
 building blocks for establishing trust in a platform

 Root of Trust for Storage (RTS)
 shielded/secured storage (limited operations, e.g. no reset) for

measurements (and keys too)
 Root of Trust for Measurement (RTM)
 measure and send integrity measurement to RTS
 usually the CPU executes the CRTM (Core RTM) at boot as

the first piece of BIOS/UEFI code, to start the chain of trust
 Root of Trust for Reporting (RTR)
 entity that securely reports the content of RTS (typically with a

digital signature)

© A.Lioy (Politecnico di Torino, 2024) 14

Measurements and chain of trust

 measurement = computing the hash of a software object
 component A is executed
 it measures component B and stores the measurement in RTS
 then it launches component B

 component B is executed
 it measures component C and stores the measurement in RTS
 then it launches component C

 and so on …
 by using RTR, a verifier can securely retrieve B’s and C’s

measurements from the RTS
 B and C can only be trusted if A is trustworthy
 A is the CRTM – it MUST be trusted!

© A.Lioy (Politecnico di Torino, 2024) 15

Windows
boot protection

© A.Lioy (Politecnico di Torino, 2024) 16

Trusted Platform Module (TPM) – a HW RoT

 inexpensive (< $1)
 available on most servers, laptop, PC

 tamper-resistant
 but not tamper-proof

 it is NOT a high-speed cryptographic engine
 rather slow

 certified Common Criteria EAL4+
 “passive component”, needs to be driven by the CPU
 cannot prevent boot
 … but can protect data and securely report them
 so TPM is both RTS and RTR
 … but it's not RTM

© A.Lioy (Politecnico di Torino, 2024) 17

TPM features

 RTS ~ secure storage (extend-only)
 RTR ~ report content of RTS with digital signature
 hardware random number generator
 crypto algorithms (hash, MAC, symmetric and asymmetric

encryption) … but it's NOT a crypto accelerator (slow!)
 secure generation of cryptographic keys for limited uses
 binding (data encrypted using the TPM bind key, a unique

RSA key descending from a storage key)
 sealing (similar to binding, but in addition, specifies the TPM

state for the data to be decrypted, i.e. unsealed)
 computer programs can use a TPM to authenticate hardware

devices, since each TPM chip has a unique and secret
Endorsement Key (EK) burned in as it is produced

© A.Lioy (Politecnico di Torino, 2024) 18

TPM-2.0

 cryptographic agility (SHA-1 and SHA-256, RSA, ECC-256,
HMAC, AES-128, …)

 three key hierarchies (platform, storage, and endorsement)
 multiple keys and algorithms per hierarchy
 policy-based authorization
 platform-specific specifications for
 PC client
 mobile
 automotive-thin

© A.Lioy (Politecnico di Torino, 2024) 19

Using a TPM for securely storing data

 physical isolation
 storage in the TPM (i.e. in its NVRAM)
 primary keys
 permanent keys

 very limited space
 Mandatory Access Control

 cryptographic isolation
 storage outside of the TPM (i.e. in the platform HDD/SSD)
 keys or data
 blob needs to be protected !!!

 encrypted with a key controlled by the TPM
 Mandatory Access Control

© A.Lioy (Politecnico di Torino, 2024) 20

Implementations of TPM

 Discrete TPM = dedicated chip
 implements TPM functionality in its own tamper resistant

semiconductor package
 Integrated TPM = part of another chip
 not required to implement tamper resistance (Intel has

integrated TPMs in some of its chipsets)
 Firmware TPM = software-only solution
 runs in a CPU's trusted execution environment (AMD, Intel,

and Qualcomm have implemented firmware TPM)
 Hypervisor TPM = virtual TPM provided by an hypervisor
 runs in an isolated exec. env. (comparable to a firmware TPM)

 Software TPM = software emulator of TPM
 useful only for development purposes.

© A.Lioy (Politecnico di Torino, 2024) 21

TPM Platform Configuration Register (PCR)

 TPM's implementation of RTS
 core mechanism for recording platform integrity
 only reset at platform reset (or with hardware signal)
 … so malicious code cannot take its measurement back

 PCRs are extended using a cumulative hash
 PCR_new = hash(PCR_old || digest_of_new_data)
 in short this is the EXTEND operation

 can be used to gate access to TPM objects and operations
 e.g. SEALING = data encrypted with TPM key associated to a

specific STATE (valid user authN, set of PCR values)
 data decrypted only if current state is equal to sealing state
 e.g. BitLocker seals disk encryption keys to PCR values

© A.Lioy (Politecnico di Torino, 2024) 22

Measured boot

1st Stage Boot Loader
BootROM = Core Root of
Trust for Measurement

2nd Stage Boot Loader
UEFI/BIOS

store in
PCRs

b83fac83fb9286

f9392c876d55a8

a34fc80fde83f1

measure then load

measure then load

© A.Lioy (Politecnico di Torino, 2024) 23

OS

Remote attestation
(1) challenge (=nonce)
(2) measurements (and nonce) signed with the device's key
(3) validate signature (crypto + ID) and check measurements
against Reference Measurements (golden values)
(4) if validation fails then alarm + reaction

verifier
(remote)

challenge
PCR0: b83fac83fb9286
PCR1: a34fc80fde83f1
PCR2: f9392c876d55a8
PCR3: a82057ac840d83
... TPM

DevID

platform

3

2. signed measurements

© A.Lioy (Politecnico di Torino, 2024) 24

1. challenge

Management of Remote Attestation

 only boot attestation (static) or periodic (dynamic) too?
 consider the attack model (runtime vulnerabilities)

 periodicity of the operation
 consider the speed of attack
 implementation limits (signature + protocol + DB lookup)
 currently in the range of some seconds (due to TPM slowness)

 whitelist generation
 difficult in general, not so difficult for limited environments
 IoT, edge device, SDN, NFV, …

 labels (good, old, buggy, vulnerable, …)
 include configurations too (e.g. from MANO, netman)
 easy if file-based, difficult if memory-based

© A.Lioy (Politecnico di Torino, 2024) 25

TCG PC Client PCR use (detail allocation)
PCR UsagePCR Index

SRTM, BIOS, Host Platform Extensions, Embedded Option
ROMs, and PI Drivers0

Host Platform Configuration1
UEFI driver and application Code2
UEFI driver and application Configuration and Data3
UEFI Boot Manager Code (usually the MBR) and Boot
Attempts4

Boot Manager Code Configuration and Data (for use by the
Boot Manager Code) and GPT/Partition Table 5

Host Platform Manufacturer Specific6
Secure Boot Policy7
Defined for use by the Static OS 8-15
Debug16
Application Support23

© A.Lioy (Politecnico di Torino, 2024) 26

measure then load

Measured execution

 problem:
 not enough PCRs

 solution:
 use just one PCR!

 … but now the PCR value depends on the execution order (!)
 extend(app#1)+extend(app#2) ≠ extend(app#1)+extend(app#2)

© A.Lioy (Politecnico di Torino, 2024) 27

app
#3

app
#2

app
#1

store in
PCRs

a82057ac840d83

f9392c876d55a8

OS

Linux IMA (Integrity Measurement Architecture)

 Integrity Measurement Architecture (IMA)
 extend attestation to dynamic execution (e.g. applications)
 Collect
 measure a file before it is accessed

 Store
 add the measurement to a kernel-resident list (ML,

Measurement List) and extend the IMA PCR (PCR10)
 [Appraise]
 enforce local validation of a measurement against a

“good” value stored in an extended attribute of the file
 [Protect]
 protect a file's security extended attributes

(including appraisal hash) against off-line attacks
© A.Lioy (Politecnico di Torino, 2024) 28

Verification of the IMA ML

 with IMA enabled, the attestation report contains not only
nonce and PCR values but also the ML (Measurement List)

 … but the PCR10 value is variable, as it depends on (1) the
applications executed, and (2) their order of execution

 … so the verifier computes the correct value by using the ML
 myPCR10 = 0
 myPCR10 = extend (boot_aggregate)
 foreach measure M of a component C in the ML
 if (C not authorized) then alarm
 if (M different from gold_measure(C)) then alarm
 myPCR10 = extend (M)

 if (myPCR10 == PCR10) then OK else alarm

© A.Lioy (Politecnico di Torino, 2024) 29

Size and variability of the TCB

 the Trusted Computing Base (TCB) is the smallest amount of
code (and hardware, people, processes, ...) to be trusted to
meet the security requirements

 confidence in the TCB can be increased through
 static verification
 code inspection
 testing
 formal methods

 all these methods are expensive and inaccurate, so reducing
the complexity of the TCB is important but it is not sufficient

 the TPM tries to create a TCB via the CRTM … but the TCB
has become too large and too much dynamic
 two “identical” computers could have different measures

© A.Lioy (Politecnico di Torino, 2024) 30

Dynamic Root of Trust for Measurement (DRTM)

 idea: rather than trust everything since BIOS/UEFI, reset CPU
and start measuring from that point on

 TPM v1.2 added dynamic PCRs (17–23)
 set to -1 on boot
 can be reset by OS to 0

 PCR17 is special
 only set by calling SKINIT (AMD-V) or SENTER (Intel TXT)
 disable DMA, interrupts, debugging
 measure and execute Secure Loader Block

© A.Lioy (Politecnico di Torino, 2024) 31

Dynamic Root of Trust for Measurement (DRTM)

 modern CPUs have a special processor command
 SENTER (Intel TXT, executes the SINIT binary module)
 SKINIT (AMD SVM)

 stops all processing on the platform
 executes DRTM code
 DRTM hashes contents of memory region
 stores measurement in dynamic PCR

 transfer control to specified location in memory
 also called Late Launch
 helps to avoid the problem with PCR values incorrect when

firmware is updated (and the consequent problem with
sealed data)

© A.Lioy (Politecnico di Torino, 2024) 32

Hypervisor TEE

 DRTM was intended to allow loading a hypervisor
 e.g. Xen or VMWare ESX
 hypervisor loads and isolates VMs
 TPM can attest the hypervisor
 TPM sealed storage can be released only to hypervisor once it

has been loaded properly
 may be useful for cloud computing
 hypervisor is still a huge amount of code to validate (Xen

contains a full copy of Linux; VMware is of similar size)

© A.Lioy (Politecnico di Torino, 2024) 33

RA in virtualized environments

 having a hardware RoT is an important point for security
 full virtualization (i.e. VM)
 often offers just a software version of the RoT (e.g. vTPM by

Xen, Google, VMware)
 we need a strong link between the vTPM and the pTPM
 deep attestation (hardware-based)
 sealed objects rooted in pTPM to protect the vTPM
 requires extension of the usual TCG-defined interfaces

(on-going work)
 … but if we adopt light virtualization (e.g. Docker containers)
 … then a different solution is possible because hardware

(including TPM) is shared

© A.Lioy (Politecnico di Torino, 2024) 34

RA for OCI containers
 not tied to a specific containerization technology
 transparent to the container runtime and to the containerized

workloads
 provides RA of host + containers, based on a hardware RoT

© A.Lioy (Politecnico di Torino, 2024) 35

35

Virtualisation layer

OCI
container 1

OCI
container N. . .

Attestation
AgentIMA ML

Attester
Verifier

attestation
response

"golden"
values

verify TPM authenticity

verify TPM quote validity

verify Trusted Boot

verify IMA ML integrity

verify OS trustworthiness

verify OCI containers
trustworthiness

RA for OCI containers: implementation

 new IMA template, ima-dep-cgn
 dependencies: entry belongs to the host or to a container?
 control-group-name: identifies the specific container
 template-hash: digest calculated with an algorithm other than

sha1 (sha256, sha512, ...)

© A.Lioy (Politecnico di Torino, 2024) 36

Silvia Sisinni – Zero-Trust Security of Network Nodes 36

filename
hint

filedata
hash

cgroup-namedependenciestemplate-
name

template-hashPCR

/usr/bin/bash[...]8b2ad985209b51aea87[
...]

runc:/usr/bin/containerd-shim-
runc-v2:...

ima-dep-
cgn

sha256:8af8cf[...]10

/usr/bin/kmod[...]/kworker/u8:3:kthreadd:swapper
/0

ima-dep-
cgn

sha256:1590d[...]10

/usr/lib/[...]/ld-
2.31.so

[...]5cbc6f873774aa67fcfa
[...]

/usr/bin/bash:/usr/bin/container
d-shim-runc-v2:...

ima-dep-
cgn

sha256:01c73[...]10

Container ID

Credentials chain of trust

 for device identity / inventory
 from the TPM vendor to a customer-usable certificate
 IEEE 802.1AR – Secure Device Identity using TPM
 allows Zero-Touch management of a platform

EK
cert
TPM

vendor

EK

Platform

IDevID
cert

OEM

IDevID

Platform

LDevID
cert

Customer

LDevID

Platform

Manufacturer
provisioning
of IDevID
based on
EK + TPM
vendor cert

In-field LDevID
provisioning
based on
IDevID + OEM
cert

© A.Lioy (Politecnico di Torino, 2024) 37

Which is your trust perimeter?

 installation (or download) time
 check signature over component

 load time
 measure components when loaded for execution
 what is "executable"?

 run time (components that change their behaviour while
running)
 measure configuration files (when loaded or re-loaded)
 beware of caching!

 measure in-memory configuration (e.g. filtering or forwarding
rules modified by CLI or network protocol)
 needs appropriate firmware/host

© A.Lioy (Politecnico di Torino, 2024) 38

Audit and forensic analysis

 node (e.g. IoT, ECU) / network behaviour cannot be given for
granted any more

 increasingly important as more intelligence / computation is
moved into the edge nodes / network

 open questions:
 system state at time T?
 network path + processing for user U at time T?

 remote attestation can provide evidence of the state of the
monitored nodes in an ICT infrastructure

© A.Lioy (Politecnico di Torino, 2024) 39

IMPLEMENTING
REMOTE ATTESTATION

© A.Lioy (Politecnico di Torino, 2024) 40

Keylime

 open-source remote attestation project
 hosted at CNCF (Cloud-Native Computing Foundation)
 cloud oriented
 TPM based
 highly scalable RA framework
 straightforward architecture

 features
 remote boot attestation
 Linux IMA support (periodic runtime attestation)
 registration of multiple agents to a Verifier
 [certificate infrastructure]

© A.Lioy (Politecnico di Torino, 2024) 41

Keylime: structure

 Attester Agent
 retrieve TPM quote
 collects other necessary data (e.g. IMA list)
 [listen for revocation messages]

 Registrar
 manages agent enrollment, providing a UUID
 handle keys (Agent Key AK, Endorsement Key EK)

 Verifier
 attests the platforms (by talking to the agents)
 [sends revocation messages (agent leaves trusted state)]

 tenant
 CLI management tool for agent

© A.Lioy (Politecnico di Torino, 2024) 42

Keylime: schema

Registrar

Verifier

enrollment

verification requests

agent quote
proof

verification

proofs
collection

Attest. Agent

proofs
collection

Attest. Agent

© A.Lioy (Politecnico di Torino, 2024) 43

Remote ATestation procedureS – RATS (I)

 proposed by IETF
 support for different platforms at load time

 defines the actors in RA procedures
 Attester, Relying Party, Verifier, Relying Party Owner, Verifier

Owner, Endorser, Reference Value Provider
 defines topological patterns

 Background Check Model
 Passport Model

 RFC-9334 "RATS Architecture"
 many other rfc-drafts going-on, about various aspects (data

formats, procedures, attestation models, …)

© A.Lioy (Politecnico di Torino, 2024) 44

supply chain

Remote ATestation procedureS – RATS (II)

© A.Lioy (Politecnico di Torino, 2024) 45

Endorser

endorsements

Ref. Values
Provider

reference
values

Verifier
Owner

appraisal policy
for evidence

RP
Owner

Relying
Party

appraisal policy
for attestation

results

attestation
results

Attester
evidence

Verifier

RATS – main roles

 Attester
 generates Evidence when attestation needed
 requested by the Relying Party
 needed for accessing a service (e.g. OAuth)

 Verifier
 compares Evidence against Reference Values (using Appraisal

Policy)
 uses Endorsements to identify valid attesters

 Relying Party
 evaluate Attestation Results using RP Policy

 note: RP and Verifier may be part of the same service

© A.Lioy (Politecnico di Torino, 2024) 46

Background Check Model

Passport Model

Remote ATestation procedureS – RATS (III)

© A.Lioy (Politecnico di Torino, 2024) 47

Verifier

Attester evidence Relying Party
Verifier

Attester Relying
Party

attestation
result

1
2

evidence

3

evidence

2

attestation
result

1

3
attestation
result

Attestation-related IETF working groups

 RATS = https://datatracker.ietf.org/wg/rats/about/
 Trusted Execution Environment Provisioning (TEEP)
 https://datatracker.ietf.org/wg/teep/about/

 Software Update for Internet of Things (SUIT) =
 https://datatracker.ietf.org/wg/suit/about/
 manifest format defined in SUIT used in TEEP

 Limited Additional Mechanisms for PKIX and SMIME (LAMPS)
 https://datatracker.ietf.org/wg/lamps/about/

 Web Authorization Protocol (OAuth)
 https://datatracker.ietf.org/wg/oauth/about/

 Privacy Pass
 https://datatracker.ietf.org/wg/privacypass/about/

© A.Lioy (Politecnico di Torino, 2024) 48

Veraison (VERificAtIon of atteStatiON)

 open-source project
 enhance consistency for Verification Service
 implementation of various standards
 set of library for customizations
 generated by ARM ATG, then adopted by the Confidential

Computing Consortium in the Linux Foundation
 support for different architectures and RoT implementations
 no standard agent implementation
 flexible structure for evidence provisioning

 high customizability
 choose only necessary features
 easy development of custom features

© A.Lioy (Politecnico di Torino, 2024) 49

Veraison: architecture

 Provisioning service
 Verification service
 Attestation scheme
 Veraison Trusted Service (VTS)
 Storage

Provisioning
plugin manager

Attestation

Endorsement
Handler

Evidence
Handler

Verification

Veraison Trusted
Services

plugin manager

K - V
Store

GRPC

REST
endpoint

API

API

© A.Lioy (Politecnico di Torino, 2024) 50

REST
endpoint

Veraison: verification

 Verification service
 Policy and API calls

 Veraison Trusted Service (VTS)
 data extraction, validation, sign of the attestation result

© A.Lioy (Politecnico di Torino, 2024) 51

Verification
Service
Retrieve
Session

Resolve
Media
Types

Veraison Trusted Service
Get

Trust
Anchors

Extract
Claims

Get
Endors
ments

Validate Appr-
aise Sign att.

result

Request
Handler VTS HandlerHTTP

Plugin
Mgr.

K - V Store

OPA SignerEvidence Handler

Veraison: data formats (I)

 native support for various attestation types, by ingestion and
production of various formats

 Entity Attestation Token (EAT) in CBOR or JSON format
 Evidence
 EAT PSA (by Platform Security Architecture, a security

certification scheme for IoT)
 EAT CCA (by ARM Confidential Compute Architecture)
 TCG TPM
 TCG DICE
 AWS Nitro (by AWS for Nitro secure enclaves)

© A.Lioy (Politecnico di Torino, 2024) 52

Veraison: data formats (II)

 Endorsements and Reference Values
 CoRIM (Concise Reference Integrity Manifest)
 CoMID (Concise Module ID) for hardware/firmware modules
 CoSWID (Concise Software ID) software components
 CoBOM (Concise Bill of Material) = active CoMID/CoSWID
 CoTS (Concise Trust Anchor Stores)

 Appraisal Policy for Evidence
 OpenPolicyAgent

 Attestation Results
 EAR (EAT Attestation Results)
 AR4SI (Attestation Results for Secure Interactions)

© A.Lioy (Politecnico di Torino, 2024) 53

Device Identifier Composition Engine (DICE)

 DICE provides a secure identity to a device and to all its
software components constituting its TCB

 Compound Device Identifier (CDI)
 secret value resulting from the application of a cryptographic

one-way function to a combination of a DICE Layer’s secret
value and the measurement of the next DICE Layer

 TCB Component Identifier (TCI)
 measurement of a system layer

 Unique Device Secret (UDS): secret value of a specific
platform used to compute the first CDI value
 statistically unique: randomly generated with low possibilities to

have the same value in another device
 not correlated: impossible to determine UDS of other devices

© A.Lioy (Politecnico di Torino, 2024) 54

DICE layered architecture

 each layered TCB component combines its CDI secret with
the TCI of the next layer to generate the next layer CDI

“DICE Layering Architecture”, https://trustedcomputinggroup.org/resource/dice-layering-
architecture/

© A.Lioy (Politecnico di Torino, 2024) 55

DICE keys and certificates

current or next layer

ECA keys used by a
layer to issue

certificates for keys
generated for the

current or next layer

AKs used to sign
attestation evidence

Identity keys used to sign
authentication challenges© A.Lioy (Politecnico di Torino, 2024) 56

DICE layered certification

 each layer can act as an Embedded CA (ECA) to create a
hierarchy based on the manufacturer (Root CA)

 each ECA can produce two different types of certificate
 Device Identity cert: used to embed a cryptographic identity
 Attestation cert: used to authenticate evidence

 each certificate must contain the extension DiceTcbInfo
 its OID is 2.23.133.5.4.1 = joint-iso-itu(2).international-

org(23).tcg(133).tcg-platformClass(5).dice(4).TcbInfo(1)
 it's a SEQUENCE of information about the target level
 names (e.g. vendor. model, layer)
 measurements (e.g. version, svn, fwidlist={hashAlg+digest})

© A.Lioy (Politecnico di Torino, 2024) 57

© A.Lioy (Politecnico di Torino, 2024) 58

DICE example
(SPIRS project)

Open profile for DICE

 Google specification for implementing DICE
 each layer has two CDIs
 Attestation CDI (mandatory)
 Sealing CDI (optional)

 the CDI of the next level is computed using also a set of
specific input values (depending on the type of the CDI)
 configuration data (information on the integrity of the system)
 authority data (hash of information about verified boot trusted

authority)
 mode decision (operating mode of the device)
 hidden inputs (values not included in any certificate)

 each layer has an Attestation keypair derived from the
Attestation CDI

© A.Lioy (Politecnico di Torino, 2024) 59

DICE and RIOT

 RIOT (Robust Internet Of Things) is Microsoft specification for
implementing DICE

 there is only one CDI for the entire device
 it is computed combining together the UDS of the platform with

the measure of the RIOT core (the only part of the sw that can
access the CDI)

 each layer has an Alias keypair used for attestation
 the layer N computes the Alias keypair for the layer N+1 starting

from the measure of the layer N+1 (for the RIOT core it is
derived from the CDI)

© A.Lioy (Politecnico di Torino, 2024) 60

Google Cloud

 optional attestation on platforms via policies
 Google Kubernetes Engine (GKE)
 Cloud Run

 binary authorization on container image
 different level of scans and analysis
 vulnerability scan, regression test
 signature of the container image hash

 container deploy-time security control
 blocks container deployment if no valid signature
 allows deployment of container if matching policies

© A.Lioy (Politecnico di Torino, 2024) 61

Amazon Web Services (AWS)

 Elastic Container Registry (ECR)
 store containers' images

 Amazon Inspector scan of container images in ECR
 new pushed images
 new vulnerability inserted

 Enhanced scanning
 OS vulnerability
 programming language package vulnerability
 service vulnerability

© A.Lioy (Politecnico di Torino, 2024) 62

AWS Nitro

 Nitro enclave = isolated and constrained execution
environment (VM) that can talk only to parent

 enclave can request attestation (to the Nitro manager) for
proving some properties to request services (e.g. access
cryptographic keys via KMS)

© A.Lioy (Politecnico di Torino, 2024) 63

AWS Nitro's PCRs
 PCR0 (Enclave image file)
 measurement of the image file, without the section data

 PCR1 (Linux kernel and bootstrap)
 measurement of the kernel and boot ramfs data

 PCR2 (Application)
 measurement of the user applications, without the boot ramfs

 PCR3 (IAM role assigned to the parent)
 attestation succeeds only when the parent has the correct role

 PCR4 (Instance ID of the parent)
 attestation succeeds only when the parent has a specific ID

 PCR8 (Enclave image file signing certificate)
 attestation succeeds only when the enclave was booted from

an enclave image file signed by a specific certificate
© A.Lioy (Politecnico di Torino, 2024) 64

Azure Confidential Containers

 on container deployment, a token is generated
 signed by the cloud node
 verifiable by a remote entity

 token contains information
 correct deployment of the container in a TEE

 with a VM TEE
 hardware based and attested TEE
 full guest attestation
 additional data and code protection

 no need for
 specialized programming model
 special management

© A.Lioy (Politecnico di Torino, 2024) 65

The iTrust6G project

 remote attestation is a key component in the iTrust6G
project, which employs also AI, zero-trust, intents, …

 project funded by the Smart Networks and Services Joint
Undertaking (SNS JU) jointly led by the EC and the 6G Smart
Networks and Services Industry Association (6G-IA)

 2024-2026
 https://www.sns-itrust6g.com/

© A.Lioy (Politecnico di Torino, 2024) 66

Some references

 UEFI/HPE root-of-trust =
https://uefi.org/sites/default/files/resources/Insyde%20HPE%
20NSA%20and%20UEFI%20Secure%20Boot%20Guidelines_
FINAL%20v2.pdf

 MS-Windows secure boot = https://learn.microsoft.com/en-
us/windows/security/information-protection/secure-the-
windows-10-boot-process

 TCG (TPM, DICE, …) = https://trustedcomputinggroup.org/
 Keylime = https://keylime.dev/
 Veraison = https://github.com/veraison

© A.Lioy (Politecnico di Torino, 2024) 67

