-

&’ ; FF Norwegian Defence
@ Research Establishment

o5
-
-~

Quantum safe cryptography

Martin Strand, PhD, senior researcher

Foto: AdobeStock

About me: Martin Strand

BS, MS in algebra and cryptography

PhD in cryptography from
Norwegian University of Science
and Technology (NTNU), 2018

Used to be expert in fully
homomorphic encryption

Senior researcher at the Norwegian
Defense Research Establishment
(FFI)

Interests: Secure computations,
lattice crypto, group key exchange,
constrained and unmanned devices

FFI

. Classical cryptography

. Quantum algorithms

. Post-quantum crypto standardisation

. Lattice cryptography

. Setbacks

. Hybrid cryptography

. Some benchmarking

. Other security properties and protocols
. What about privacy?

0. Bonus content

- OoONOOOTHA~,WN =

Crypto means cryptography

Security — against whom?

FFI

Security — against whom?

FFI

Security — against whom?

FFI

Security — against whom?

FFI

Classical cryptography

Soft start: Who can tell the time?

e Pretend it’s 11 o’clock. What'’s the time in 26 hours?

FFI 7

Examples

Letn=17.
e 10+ 12= (mod 17)
e 4.5= (mod 17)
e 33=27= (mod 17)
(These computations work particularly well when n is prime.)

FFI 8

Examples

Letn=17.
e 10+12=5 (mod 17)
e 4.5= (mod 17)
e 33=27= (mod 17)
(These computations work particularly well when n is prime.)

FFI 8

Examples

Letn=17.
e 10+12=5 (mod 17)
e 4.5=3 (mod 17)
e 33=27= (mod 17)
(These computations work particularly well when n is prime.)

FFI 8

Examples

Letn=17.
e 10+12=5 (mod 17)
e 4.5=3 (mod 17)
e 33=27=10 (mod 17)
(These computations work particularly well when n is prime.)

FFI 8

How to agree on a secret

Martin you

Random 0 < a< 17

Set A= 32 (mod 17) A Random 0 < b < 17
B Set B= 3" (mod 17)

Set Cy = B? (mod 17) Set C; = A? (mod 17)

FFI °

How to agree on a secret

Martin

Random 0 < a< 17
Set A= 32 (mod 17)

Set Ci = B? (mod 17)

you

Random 0 < b < 17
Set B= 3" (mod 17)
Set C; = A? (mod 17)

We have C = C; = C, and nobody else knows C unless they are really good at computing

discrete logarithms.

FFI

Why does it work?

Cy = B2 = (3%)°
_ Sba _ Sab
=3 =A

FFI 10

Let’s try!
Martin
Random 0 < a< 17
Set A= 32 (mod 17)

Set C1 = B? (mod 17)

30 =1
3' =
3=
3% =1
3t =1
3°=5

36 =15
3 =11
3 =16
3¥=14
30=8
31" =7

you

Random 0 < b < 17
Sett B = 3" (mod 17)
Set C, = AP (mod 17)

32=4
3% =12
34 =2
35 —¢g
316 =1
37 =3

FFI

How big must p be?

FFI

On the back of the envelope

The problem
Given p,g,h= g? (mod p), find a.

Assumptions

e 240 operations per second (Intel Core i9-13900KS: 237)
e About one per person, say 10000000000 CPUs

e 31536000 seconds in a year

o In total, 2% operations per year

FFI 13

On the back of the envelope

The problem

Given p,g,h= g? (mod p), find a.

Assumptions

e 240 operations per second (Intel Core i9-13900KS: 237)
e About one per person, say 10000000000 CPUs

e 31536000 seconds in a year

In total, 2% operations per year

(Bitcoin: ~ 2% operations per year, 1/64 of this)

FFI 13

Attack: Brute force

Set p ~ 2128,

FFI

Attack: Brute force

Set p ~ 2'28_ 1t will then take 2128 /298 ~ 1 000 000 000 years to find a.

Asymptotic runtime

O(p)

FFI 14

Somewhat smarter algorithms

104
871 — Brute force
Pohlig-Hellman + Shank
5 Index calculus
()
E
€ 4
=}
oc
2 1
0 !
0 10 20 30 40 50

Length b

FFI

Somewhat smarter algorithms

104
871 — Brute force
—— Ponhlig-Hellman + Shank
5 Index calculus
()
E
€ 4
=}
oc
2 1
0 !
0 10 20 30 40 50

Length b

FFI

Somewhat smarter algorithms

104
871 — Brute force
—— Ponhlig-Hellman + Shank
5 e Index calculus
()
E
€ 4
=}
oc
2 1
0 !
0 10 20 30 40 50

Length b

FFI

Number of atoms in the universe

100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000

FFI 16

Number of unique chess games

1 000 000 000 000 00O 000 000 00O 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000

FFI 17

A suitable prime for Diffie-Hellman

17 371
675
975
996
585
940
483
384
114
692
215
266
793

633
141
116
372
415
050
446
323
200
842
180
789
730

710
997
670
379
169
744
364
322
002
421
379
511
933

861
211
023
602
949
425
930
347
489
774
822
781
403

526
607
472
426
664
005
471
988
905
076
041
064
449

985
897
796
678
415
234
865
836
246
905
036
026
281

402
588
825
900
820
342
451
585
623
917
186
694
865

756
436
233
493
483
360
176
004
078
061
832
452
751

155
880
643
286
514
377
965
216
674
448
388
185
197

605
112
612
192
690
140
825
878
988
967
654
724
897

996
664
395
039
301
221
059
741
568
466
983
178
543

322
345
266
475
509
362
235
293
740
083
120
282
205

196
732
186
551
982
953
201
400
682
362
685
543
563

257
402
808
678
058
519
349
993
222
856
889
463

048
516
119
848
398
273
014
565
428
797
564
162

455
434
984
776
659
046
188
478
856
534
412
021

FFI

Can we use a smaller number?

FFI 1

Curve25519

57 896 044 618 658 097 711 785 492 504 343 953 926 634 992 332 820
282 019 728 792 003 956 564 819 949

FFI 20

We often use asymmetric encryption to
establish keys for symmetric encryption

FFI

Our primitive toolbox

| Symmetric Asymmetric
Confidentiality | AES, ChaChaZ2o, ... Diffie—Hellman, ElGamal, ...
Integrity HMAC, KMAC, AES-GCD, ... RSA signatures, DSA, ECDSA, ...

FFI 22

Quantum algorithms

(Photo: Lars Plougmann (CC BY-SA 2.0))

FFI 24

Shor’s algorithm

Polynomial-Time Algorithms for Prime Factorization

and Discrete Logarithms on a Quantum Computer*

Peter W. Shor'

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics iz taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as th
of several proposed eryplosy

+ basis
ms. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.

FFI

25

How to factor efficiently

Given N = pq, find p, q
1. Choose 1 < a < N such that gcd(a, N) = 1
2. Find smallest r > 0 such that & =1 (mod N)
3. 1f24r,goto1
4. If g/2 = —1 (mod N), goto 1
5. Let d = gcd(a”/2 — 1, N)
Can show: d is a non-trivial factor of N.

FFI 2

Shor’s algorithm vs. dlog and factoring

Runtime

104

—— Index calculus
Shor

10

20 30
Length b

40

50

FFI

27

Shor’s algorithm vs. dlog and factoring

104
81 —— Index calculus
— Shor
6 1
()
£
€ 4
>
oc
2 1
0

Length b

FFI 27

Quantum computers are coming (?)

Theorem (Mosca)

If x + y > z, be worried now.

FFI 28

Our primitive toolbox, pt. Il

| Symmetric Asymmetric
Confidentiality | AES, ChaChaZ20, ...
Integrity HMAC, KMAC, AES-GCD, ...

FFI 20

We’ve been here before

WEEKLY WORLD

THE COMPUTER CRASH OF THE
.| MILLENNIUM!

Y1,2000

ALL BANKS WILL FAIL!

FOOD SUPPLIES
WILL BE DEPLETED!

ELECTRICITY
WILL BE CUT OFF!

THE STOCK MARKET
WILL CRASH!

. VEHICLES USING
<" COMPUTER CHIPS
WILL STOP DEAD!

TELEPHONES WILL
AW CEASE TO FUNCTION!
£ DOMINO EFFECT WILL CAUSE
A WORLDWIDE g
DEPRESSION!

FFI 30

Post-quantum crypto standardisation

NIST to

qit:marf;?e Second round:

cryptography 26 candidates

2016 2019

2017 2020

Announcing
four winners Draft standards

2022 2023

2023

First round: Third round: Call for additional
69 submissions 7+8 candidates signature
algorithms
FFI 32

2nd round candidates

Encryption Signatures
e Classic McEliece e CRYSTALS-
e CRYSTALS-KYBER DILITHIUM
e NTRU e FALCON
e SABER o Rainbow
e BIKE
e FrodoKEM e GeMSS
e HQC e Picnic
e NTRU Prime e SPHINCS+
e SIKE

FFI 33

3rd round candidates

Encryption
e CRYSTALS-KYBER (lattices)

4th round candidates
e BIKE (error correcting codes)
e HQC (error correcting codes)
e SIKE (isogenies)
e Classic McEliece (error correcting
codes)

Signatures
e CRYSTALS-DILITHIUM (lattices)
e FALCON (lattices)
e SPHINCS+ (hash functions)

FFI

34

2022: The four picks

Key encapsulation CRYSTALS-Kyber

Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint,

Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehle, Jintai Ding

Signatures

CRYSTALS-Dilithium

Vadim Lyubashevsky, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Peter Schwabe, Gregor

Seiler, Damien Stehle, Shi Bai

FALCON

Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,

Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, Zhenfei Zhang

SPHINCS+

Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott
Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld,

Peter Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, Ward Beullens

FFI

35

Lattice cryptography

Kyber: Oversimplified

Let k be an integer.

KGen 1. Choose a matrix A from R¥xk
2. Choose a vector sk = s from R¥
3. Compute t = As, and set pk = (1, A)

FFI a7

Kyber: Oversimplified

Let k be an integer.

KGen 1.

Enc(pk, m)

SESENEAEN

Choose a matrix A from Rf*k
Choose a vector sk = s from R¥
Compute t = As, and set pk = (t, A)
Choose r from RX
Setu=A"randv=t"-r+m
Return ¢ = (u, v)

FFI

37

Kyber: Oversimplified

Let k be an integer.

KGen 1. Choose a matrix A from R¥xk

2. Choose a vector sk = s from R¥

3. Compute t = As, and set pk = (1, A)
1. Choose r from R¥

2. Setu=A"randv=t"-r+m

3. Returnc = (u,v)

Dec(sk, ¢) Compute w = v — s” - u and return w

(For those reading this after the presentation: Be aware that this is wrong by purpose;
please use a different source to get the actual algorithms.)

Enc(pk, m)

FFI 37

FFI 38

Learning with errors

ai 181+ ..

Given A, b, and if g; are small,

what is s?

.@1,nSn + €1 = by
a181+...
a 181 +...
18+ ...
as 181+ ...

8,nSp+ €2 = b2
as,nSn+ €3 = bs
84,nSn+ €4 = by
as,nSp + €5 = bs

FFI

39

Lattices

Let R" = V =span{by,...b,} be areal
vector space.
Then

n
L:{Za,-b,-|a,-ez} CR"

i=1

is the lattice generated by {by,...b,}.

FFI

40

Lattices

Let R” = V = span{by,... b,} be areal
vector space.
Then

n
L= {Za,-b,- | a,-eZ} CR"
i=1

is the lattice generated by {by,...b,}.

Consider R? = span {(2, 3), (3,2)}

by

FFI

40

Lattices

Let R” = V = span{by,... b,} be areal
vector space.
Then

n
L= {Za,-b,- | a,-eZ} CR"
i=1

is the lattice generated by {by,...b,}.

Consider R? = span {(2, 3), (3,2)}

FFI

40

Lattice problems

by

FFI

a

Lattice problems

Shortest Vector Problem
Given a basis for L, find the shortest
vector in V that is also a point in L.

by

FFI

@

Lattice problems

Shortest Vector Problem
Given a basis for L, find the shortest ' s
vector in V that is also a point in L.

FFI @

Lattice problems

Shortest Vector Problem
Given a basis for L, find the shortest
vector in V that is also a point in L.

Closest Vector Problem
Given a basis for L and a point v in V,
find closest lattice point to v in L.

FFI

@

Lattice problems

Shortest Vector Problem
Given a basis for L, find the shortest
vector in V that is also a point in L.

Closest Vector Problem
Given a basis for L and a point v in V,
find closest lattice point to v in L.

FFI

@

Setbacks

Breaking Rainbow Takes a Weekend on a Laptop

Ward Beullens

IBM Research, Zurich, Switzerland
wbe@zurich.ibm.com

Abstract. This work introduces new key recovery attacks against the
Rainbow signature scheme, which is one of the three finalist signature
schemes still in the NIST Post-Quantum Cryptography standardization
project. The new attacks outperform previously known attacks for all the
parameter sets submitted to NIST and make a key-recovery practical for
the SL 1 parameters. Concretely, given a Rainbow public key for the
SL 1 parameters of the second-round submission, our attack returns the
corresponding secret key after on average 53 hours (one weekend) of
computation time on a standard laptop.

FFI a3

AN EFFICIENT KEY RECOVERY ATTACK ON SIDH
(PRELIMINARY VERSION)

WOUTER CASTRYCK AND THOMAS DECRU

imec-COSIC, KU Leuven

ABsTRACT. We present an efficient key recovery attack on the Supersingular
Isogeny Diffie-Hellman protocol (SIDH), based on a “glue-and-split” theorem
due to Kani. Our attack exploits the existence of a small non-scalar endomor-
phism on the starting curve, and it also relies on the auxiliary torsion point
information that Alice and Bob share during the protocol. Our Magma im-
plementation breaks the instantiation SIKEp434, which aims at security level 1
of the Post-Quantum Cryptography standardization process currently ran by
NIST, in about one hour on a single core. This is a preliminary version of a
longer article in preparation.

FFI a

#eprint555

Quantum Algorithms for Lattice Problems

Yilei Chen*

April 10, 2024

Abstract

We show a polynomial time quantum algorithm for solving the learning with errors problem
(LWE) with certain polynomial modulus-noise ratios. Combining with the reductions from lattice
problems to LWE shown by Regev [J.ACM 2009], we obtain polynomial time quantum algorithms
for solving the decisional shortest vector problem (GapSVP) and the shortest independent vector
problem (SIVP) for all n-dimensional lattices within approximation factors of (2{n'?). Previously,
no polynomial or even subexponential time quantum algorithms were known for solving GapSVP or
SIVP for all lattices within any polynomial approximation factors.

To develop a quantum algorithm for solving LWE, we mainly introduce two new techniques. First,
we introduce Ganssian funetions with compler variances in the design of quantum algorithms. In
particular, we exploit the feature of the Karst wave in the discrete Fourier transform of complex
Ganssian functions. Second, we use windowed quantum Fourier transform with complex Gaussian
windows, which allows us to combine the information from both time and frequency domains. Using
those techniques, we first convert the LWE instance into quantum states with purely imaginary
Gaussian amplitudes, then convert purely imaginary Gaussian states into classical linear equations
over the LWE secret and error terms, and finally solve the linear system of equations using Gaussian
elimination. This gives a polynomial time quantum algorithm for solving LWE.

FFI

45

Nine simple steps

= o

R

8.

an window on it.

Prepare a uniform superposition over L Z},,, and then apply a complex Ga
We obtain a classical string y' € Z5,, and a quantum state |1):

O D S e R EE DS (3)

keZhx-y€(rlogn)Bk

tied in y'.

where y € Z" is an unknown vector at this moment but its information is

p2) = QF Tz,

Compute 1)

Apply a complex Gaussian window on [}, get |i3), 7 € Zp.

. Compute |pg) = QFTzy, s}

Split |ip4) into higher and lower order bits, then measure the lower order bits in Zfs, , and get

h* € Z}s, o Denote the residual state (containing the higher order bits in Z5,) as |@s).

Compute [g) = QF Tz, |s). (The Karst wave feature is heavily used in the analysis of Step 6.)

I
%

Extract the centers of the Gaussian ball states in |pg) using y’, 2/, and h*, get

(20,2 2 M
o) = e 2mM o x4 v/ Sk mod M>) (14)

ents but unknown at this point.

e v' is a vector in I fixed by the previous measure

of small operations to extract v mod D?p;. without collapsing the state.

get |08} = 7).

R chosen scerot

p, values planted in the secret vector in the instance of LW1
in Step 8, and apply a few operations on |gs) to get a random vector

From |gg), use the p.
v} mad D2p; obtain
u € I}, satisfying

’ M
202"
is known amd fixed, by) =Bl qj, which is exactly

15)

w4 <b'2 V. n]) =0 (mod

cinby,

; .ng [Pl 1. Pl
the secret term we

want to learn.

FFI

46

Note: Update on April 18: Step 9 of the algorithm contains a bug, which | don't know how to fix.
See Section 3.5.9 (Page 37) for details. | sincerely thank Hongxun Wu and (independently)
Thomas Vidick for finding the bug today. Now the claim of showing a polynomial time quantum
algorithm for solving LWE with polynomial modulus-noise ratios does not hold. | leave the rest of
the paper as it is (added a clarification of an operation in Step 8) as a hope that ideas like
Complex Gaussian and windowed QFT may find other applications in quantum computation, or

tackle LWE in other ways.

FFI a7

runs through all § € Zy, 4, p, . but currently the j in the first coordinate only runs through Zy,, . So we
apply the domain extension trick (Lemma 2.17) on the first coordinate of |¢g ¢) to extend the domain
of the first coordinate from D?pypa...px to DPpipo...px - pa...px, and get

205)? . ,
|is.g) = Ze_z’“ 2 [2D% b} mod D*prp2..pi - p2.pw) ‘EDz_-;hrz__n] + Vip,. mod szlpz,,,p,\->k
JEL

Yilei (April 18) Here is the bug: the amplitude of |pg ;) does not satisfy %-pericdicil,_y. Another way of
explaining the bug is: the support of |¢g ¢} contains p1...px vectors. After domain extension, we should
have got pyp...p, - Pa.-.p, vectors, but as the way |ig,) is written, it only contains py...p, vectors. So
the expression of |y} is wrong.

FFI

48

Thomas Vidick ,

Unfortunately, the bug by itself does not seem to
teach us more about the overall viability of Chen's
approach. | think that there is much more to do to
understand what parts may still be valid, and if
some of the ideas can be extended, either back to a

quantum algorithm for lattice problems, or possibly

another application in quantum cryptography.

FFI

49

Chris Peikert
@ChrisPeikert
Any serious attempt to attack lattices/LWE that doesn’t change the

status quo should increase our confidence in their security.

.‘ Boaz Barak & @boazbaraktcs - Apr19

Chen’s paper has a bug, independently discovered by Hongxun Weng and
Thomas Vidick, that he doesn’t know how to fix. If | understand correctly, in its
current form the paper doesn’t yield any improvement on prior algorithms.

eprint.iacr.org/2024/555

1:14 PM - Apr 19, 2024 - 204K Views

3

Qo2 37 @ 61 e

. Post your reply

? Martin R. Albrecht @martinralbrecht - Apr 19

> Do you have a sense of how fundamental the bug is? Yilei doesn't know
how to fix the algorithm but it's not clear to me, this invalidates the
approach? I'm not gunning for some abstract "maybe everything is broken”
but for whether we can indeed have more confidence from this?

O1 n Qe ihi 1.2K o

FFI

50

? Martin R. Albrecht @martinralbrecht - Apr 19

> Do you have a sense of how fundamental the bug is? Yilei doesn't know
how to fix the algorithm but it's not clear to me, this invalidates the
approach? I'm not gunning for some abstract "maybe everything is broken"
but for whether we can indeed have more confidence from this?

(O] ot (VA ihi 1.2k &

@ Jacob Alperin-Sheriff @ = &

/ @DemocraticLuntz

The bug is at the end, but seems quasi-fundamentally related to the
initial idea (over a standard uSVP instance) of the product of primes use
that seems highly fundamental to the approach, so in conclusion, like
with all things in this context, "Who knows"

6:11 PM - Apr 19, 2024 - 334 Views

Q1 n V] [N A

' Post your reply

@ Jacob Alperin-Sheriff @ = # @DemocraticLuntz - Apr 19
/ Also there is NO guarantee that this is the only bug, there's no way anyone
really subjected themselves to trying to verify Step 6 yet, for instance.

@] o Q ihi 131 Q&

FFI

51

Summary of #555

e How near is the attack to work? Nobody knows.
e Open research works.

FFI 52

Hybrid cryptography

Dilemma: What do we fear the most?

1. A cryptographically relevant quantum computer, it may only be a few decades away
2. These new algorithms have fundamental flaws, just waiting to be found

FFI 54

Two answers

NSA “The schemes are fine, go fully quantum-safe.”
NOR, UK, GER, FRA, ... Get ks from PQC, k; from ECDH, k < KDF(ki, k2)

FFI 55

Some benchmarking

For discussion: How will
lattice crypto compare to
elliptic curve crypto?

FFI

Some benchmarks

Public key Private key Ciphertext

ECDH 97 B 48 B
Kyber 1568 B 3168 B 1568 B
Verification key Signing key Signature
ECDSA 48 B 48 B 96 B
Dilithium 2592 B 4864 B 4595 B
Key exchange Signature Time
Kyber Dilithium 69.6 ms
Kyber FALCON 44.5 ms
Kyber SPHINCS+ 911.0 ms
ECDHE ECDSA

(Timings from Table 2 in https://eprint.iacr.org/2023/506)

FFI 58

Some benchmarks

Public key Private key Ciphertext
ECDH 97 B 48 B
Kyber 1568 B 3168 B 1568 B
Verification key Signing key Signature
ECDSA 48 B 48 B 96 B
Dilithium 2592 B 4864 B 4595 B
Key exchange Signature Time
Kyber Dilithium 69.6 ms
Kyber FALCON 44.5 ms
Kyber SPHINCS+ 911.0 ms
ECDHE ECDSA 102.1 ms

(Timings from Table 2 in https://eprint.iacr.org/2023/506)

FFI

58

Our primitive toolbox, pt. Il

| Symmetric Asymmetric
Confidentiality | AES, ChaChaZ20, ... Kyber + Diffie—Hellman
Integrity HMAC, KMAC, AES-GCD, ... {Dilithium, SPHINCS+, Falcon} + ECDSA

FFI 59

Other security properties and protocols

Security properties

now

FFI

61

Security properties

now

FFI

61

Security properties

&

NoOW ——>

|
Forward secrecy Compromise today should not affect the past

FFI 61

Security properties

&

now ———

|
Forward secrecy Compromise today should not affect the past

Post-compromise security We should be able to return to a secure state after a full
compromise today

FFI 61

Security properties

&

now ———

|
Forward secrecy Compromise today should not affect the past

Post-compromise security We should be able to return to a secure state after a full
compromise today

Length of “today” ?

FFI 61

Signal

P~ -
Q()u

Alice Bob

Forward secrecy Compromise today should not affect the past

Post-compromise security We should be able to return to a secure state after a full
compromise today

Length of “today” One message

FFI 62

@ signal

1. Introduction

This document describes the “PQXDH” (or “Post-Quantum Extended Diffie-Hellman”) key
agreement protocol. PQXDH establishes a shared secret key between two parties who mutually
authenticate each other based on public keys. PQXDH provides post-quantum forward secrecy
and a form of cryptographic deniability but still relies on the hardness of the discrete log problem
for mutual authentication in this revision of the protocol.

FFI 63

Cloudflare Research: Post-Quantum Key
Agreement

Cloudfiare

2]

Visitor

On essentially all domains served (1) through Cloudflare, including this one, we have enabled
hybrid post-quantum key agreement. We are also rolling out support for post-quantum key
agreement for connection from Cloudflare to origins (3). Check out our blog post the state of
the post-quantum Internet for more context.

You are using X25579Kyber768Draft00 which is post-quantum secure.

[0 Eements Console Sources MNetwork Performance Memory Security X o1 8
) ~ Connection
8 Ovendiew Protocol TLS 1.3
Key exchange X25519Kyber768Draft00
nature ECDSA with SHA-256
B httpsy/pa.cloudflareresearc _ Cipher AES.128.GCM

Main origin

Se

FFI

64

What about privacy?

Consider yourself the adversary

FFI

Summary

Quantum-safe crypto is coming

Symmetric crypto is already fine

The algorithms are efficient, but the keys are large
The protocols will adopt the algorithms

Fancy crypto still needs loads of work

Security is not the same as privacy

FFI 67

We made it through!

Iy =<loy -Bl1y=(7) @ ° o
oot =1 :: 9
/, i % Q

\ —
N\
\/.,,/l \ I
\ A ES TYPE A
\

ChaCha0
Poly 305

FFI 68

Bonus content

The Number Theoretic Transform (NTT)

127
Rq _ Z[x]/(x256 + 1) o~ @ Zq[)(]/(xZ . <2B|tReverse7(/)+1> _ Tq
k=0

Let f € Ry. Then NTT : Ry — T, is given by
NTT(f) — (f mod (XZ _ CZBitReverse7(0)+1) ... fmod <X2 _ CZBitReverse7(127)+1>)

and NTT' is also efficient.

FFI 70

Kyber in the NTT realm

Multiplication in Ry:
256 x 256 multiplications

Multiplication in T:
128 x 4 multiplications

FFI

7

Sampling algorithms

SampleNTT Convert a stream of bytes into a polynomial in the NTT domain

SamplePolyCBD, Sample a coefficient array of a polynomial f € Ry, according to a
centered binomial distribution specified by 7.

FFI 72

Compression using seeds

3 p + ekpgg[384k : 384k +32] B> extract 32-byte seed from ekpkg
4: for (i 0,71 < k;i++) > re-generate matrix Ac (Zé%)“k
5: for (j < 0; j < k; j++)

6: Ali, j] « SampleNTT(XOF(p, i, j))

T end for

8: end for

FFI 73

Computer-friendly representation

Algorithm 4 ByteEncode, (F)
Encodes an array of d-bit integers into a byte array, for 1 <d < 12.

Input: integer array F € Z2°, where m =27 ifd < 12 andm =g if d = 12.
Output: byte array B € B,
1: for (i < 037 < 256; i++)

2 a < Fli] >ac€ Zou
3: for (j < 0: j <d; j++)

4 bli-d+ j] + amod2 > be {0,134
5: a+ (a—bli-d+j])/2 > note a— b[i-d + j| is always even.
6 end for

7: end for

8: B« BitsToBytes(b)

9: return B

Algorithm 5 ByteDecode, (B)
Decodes a byte array into an array of d-bit integers, for 1 <d < 12.

Input: byte array B € B34,
Output: integer array F € Z2>°, where m =24 if d < 12 and m = g if d = 12.
: b+ BytesToBits(B)

1

2: for (i < 0; i < 256; i++)

3 Fli « Xiogbli-d+j]-2/ mod m
4: end for

5: return F

FFI

74

Compression and decompression of numbers

Compressy : Zq — Zoa
x| (29/q) - X]

Decompress, : Zos — Z4
y=[(q/2) - y]

FFI 75

Compression and decompression of numbers

Compress, : Zq — Zoa

x| (29/q) - X]
Decompress, : Zos — Z4

y = [(a/2% -y]

Decompress, o Compress, ~ 1

[Decompress ;(Compress,(x)) — x| mod *q < |g/29""]

FFI 75

The finished K-PKE algorithm

Algorithm 12 K-PKE.KeyGen()

Generates an encryption key and a corresponding decryption key.

Output: encryption key ekpgg € B334+32,
Output: decryption key dkpgg; € B3

1: d & B2 o> d is 32 random bytes (see Section 3.3)
2: (p,0) + G(d) > expand to two pseudorandom 32-byte seeds
3 N+0

4: for (i < 0;i < k; i++) > generate matrix A€ (ngs)“‘
5: for (j < 0; j <k; j++)

6 Ali, j] + SampleNTT(XOF(p,i, j)) > each entry of A uniform in NTT domain
R end for

8: end for

9: for (i < 0;i < k; i++) > generate s € (23°6)F
10: s[i] < SamplePolyCBDy, (PRFp, (6,N)) >sli € Zfﬁ sampled from CBD
11: N«+N+1

12: end for

13: for (i < 0; i < k; i++) > generate e € (ZZ,-“’)‘
14: e[i] < SamplePolyCBD; (PRFp, (6,N)) >efi] € Zzﬂ’ sampled from CBD
15: N<N+1

16: end for

17: §+ NTT(s) &> NTT is run k times (once for each coordinate of s)
18: €< NTT(e) > NTT is run & times
19: i Aos+é © noisy linear system in NTT domain
20: ekpkg ¢ ByteEncodey,(1)[|p > ByteEncode, is run k times; include seed for A
21: dkpgkg < ByteEncodey, (8) > ByteEncodey, is run k times

22: return (ekpk. dkpke)

FFI

76

The finished K-PKE algorithm

Algorithm 13 K-PKE.Encrypt(ekpkg,m, r)

Uses the encryption key to encrypt a plaintext message using the randomness r.

Input: encryption key ekpkp € B3$4+32,
Input: message m € B,
Input: encryption randomness r € B2
Output: ciphertext ¢ € B3(dk+dy),
1: N«O
2: ¢ ByteDecode, (ekpke[0 : 384K])
3: p < ekpye[384k : 384k +32]
4: for (i < 0; i < k; i++)
5 for (j < 0; j <k; j++)
6 Ali, j] + SampleNTT(XOF(p, i, /)
7 end for
8: end for
9: for (i + 0:i < k: i++)
10: r(i] < SamplePolyCBDy, (PRFy, (.N))
11: N«N+1
12: end for
13: for (i < 0;i < k; i++)

14 ey[i] < SamplePolyCBDy, (PRFy, (.N))

15 N«N+1

16: end for

17: €3 ¢ SamplePolyCBD,,, (PRFy, (.N))
18: - NTT(r)

19: u e NTT'(ATof) 4 ¢

20: [Decompress) (ByteDecode; (m)))
21 v NTT (T of) +er+p

22: ¢; + ByteEncode,, (Compress,, (u))
23: ¢ ¢ ByteEncode,, (Compress,, (v))
24: return ¢ < (c1|c2)

> extract 32-byte seed from ekpkg
©> re-generate matrix A€ (2356)’“’(

> generate r € (Z(ZIS(’)’(
orfi]e Z?(’ sampled from CBD

1> generate €; € (Zﬁss)"
>eli e Z{z]se sampled from CBD

> sample e; € Z(zlss from CBD
&> NTT is run k times
> NTT! is run & times

> encode plaintext m into polynomial v.
o> ByteEncode,, is run k times

FFI

76

The finished K-PKE algorithm

Algorithm 14 K-PKE.Decrypt(dkpkg, c)

Uses the decryption key to decrypt a ciphertext.
B8,

Input: decryption key dkpkg €
Input: ciphertext ¢ € B32(duk+dv)

Output: message m € B2

¢+ c[0:32d,k]

2+ c[32d,k : 32(dyk +d,))

u Decompress, (ByteDecode,, (c1)) > ByteDecode,, invoked k times
v < Decompress, (ByteDecodey, (c2))

§ « ByteDecode (dkpkEg)

W v—NTT ' $ToNTT(u)) >NTT ! and NTT invoked & times
m < ByteEncode; (Compress; (w)) > decode plaintext m from polynomial v
return m

PR

FFI 76

Security amplification: The Fujisaki-Okamoto transformation

Theorem (Fujisaki-Okamoto (informal))

If € is an IND-CPA secure public-key cryptosystem, then FO(E) is an IND-CCA secure key
encapsulation mechanism.

FFI 7

Security amplification: The Fujisaki-Okamoto transformation

Theorem (Fujisaki-Okamoto (informal))

If € is an IND-CPA secure public-key cryptosystem, then FO(E) is an IND-CCA secure key
encapsulation mechanism.

Theorem 3.5 (PKE; det., OW-VA M KEMZ, IND-CCA). If PKE; is 6;-correct, then so is KEM,.
Furthermore, assume PKE; to be rigid. Let G denote the random oracle that PKE, uses (if any), and let
GEncy,G and (pec,,G denote an upper bound on the number of G-queries that Ency, resp. Decy makes upon
a single invocation. If Ency is deterministic then, for any IND-CCA adversary B against KEM#, issuing
at most qp queries to the decapsulation oracle DECAPS#L and at most qg, resp. qu queries to its random
oracles G and H, there exists an OW-VA adversary A against PKEy that makes at most qp queries to the
Cvo oracle such that

AdVRBICA(B) < AdVERE™ (A) + 61 (g + (g1 + 4D) (dency G + dDecs,6)

and the running time of A is about that of B.

(Hofheinz, Hévelmanns, Kiltz: “A Modular Analysis of the Fujisaki-Okamoto
Transformation” (2017))

FFI 7

ML-KEM

Algorithm 15 ML-KEM KeyGen|()

Generates an encapsulation key and a corresponding decapsulation key.
P y P 8 P €y.
[B384k+32

Output: Encapsulation key ek €
Output: Decapsulation key dk € 708696,

Iz B3 >z is 32 random bytes (see Section 3.3)
2: (ekpke,dkpke) + K-PKE.KeyGen() t> run key generation for K-PKE
3: ek < ekpkg > KEM encaps key is just the PKE encryption key
4: dk + (dkpkg||ek| H(ek)|z) > KEM decaps key includes PKE decryption key
5: return (ek,dk)

FFI 78

ML-KEM

Algorithm 16 ML-KEM.Encaps(ek)

Uses the encapsulation key to generate a shared key and an associated ciphertext.
Validated input: encapsulation key ek & B384+32,

Output: shared key K € B3,

Output: ciphertext ¢ € B32(dk+d),

11 m B2 > m is 32 random bytes (see Section 3.3)
2: (K.r) + G(m||H(ek)) > derive shared secret key K and randomness r
3: ¢ + K-PKE.Encrypt(ek,m,r) > encrypt m using K-PKE with randomness r

4: return (K, c)

FFI 78

ML-KEM

Algorithm 17 ML-KEM.Decaps(c,dk)

Uses the decapsulation key to produce a shared key from a ciphertext.
Validated input: ciphertext ¢ € B32(duk+ds).

Validated input: decapsulation key dk € B768k+96,

Output: shared key K € B,

1: dkpkg dk[0 : 384k] > extract (from KEM decaps key) the PKE decryption key
2: ekpgg «— dk[384k : 768k + 32] > extract PKE encryption key
3. h+ dk[768k + 32 : 768k + 64] b extract hash of PKE encryption key
4: z 4 dk[768k + 64 : 768k +96] > extract implicit rejection value
5. m' + K-PKE.Decrypt(dkpkg,c) 1> decrypt ciphertext
6: (K',r") « G(m'||h)
7. K+ J(zc,32)
8: ¢’ + K-PKE.Encrypt(ekpgg,m',r’) > re-encrypt using the derived randomness r’
9: if c # ¢’ then
10: K'+—K > if ciphertexts do not match, “implicitly reject”
11: end if
12: return K’
FFI 78

Parameter sets and key sizes

n g k ny ma dy d, required RBG strength (bits)
ML-KEM-512 256 3329 2 2 10 4 128
ML-KEM-768 256 3329 3 2 2 10 4 192

ML-KEM-1024 256 3329 4 2 2 11 5 256

Table 2. Approved parameter sets for ML-KEM

encapsulation key decapsulation key ciphertext shared secret key

ML-KEM-512 800 1632 768 32
ML-KEM-768 1184 2400 1088 32
ML-KEM-1024 1568 3168 1568 32

Table 3. Sizes (in bytes) of keys and ciphertexts of ML-KEM

FFI 79

NIST security levels

NIST cat. As strong as Kyber
I AES-128 ML-KEM-512
Il SHA-256

1 AES-192 ML-KEM-768
v SHA-384
v AES-256 ML-KEM-1024

FFI 80

	Classical cryptography
	Quantum algorithms
	Post-quantum crypto standardisation
	Lattice cryptography
	Setbacks
	Hybrid cryptography
	Some benchmarking
	Other security properties and protocols
	What about privacy?
	Bonus content

